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Machine Learning 2

Syllabus

A. Advanced Supervised Learning
Fri. 7.4. (1) A.1 Generalized Linear Models

Fri. 14.4. — — Good Friday —
Fri. 21.4. (2) A.2 Gaussian Processes
Fri. 28.4. (3) A.2b Gaussian Processes (ctd.)
Fri. 5.5. (4) A.3 Advanced Support Vector Machines

Fri. 12.5. (5) A.4 Neural Networks
Fri. 19.5. (6) A.5 Ensembles (Stacking)
Fri. 26.5. (7) A.5b Ensembles (Boosting, ctd.)
Fri. 2.6. (8) A.5c Ensembles (Mixtures of Experts, ctd.)
Fri. 9.6. — — Pentecoste Break —

Fri. 16.6. (9) A.6 Sparse Linear Models — L1 regularization
Fri. 23.6. (10) A.6b Sparse Linear Models — L1 regularization (ctd.)
Fri. 30.6. (11) A.7. Sparse Linear Models — Further Methods

B. Complex Predictors
Fri. 7.7. (12) B.1 Latent Dirichlet Allocation (LDA)
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Machine Learning 2 1. The Exponential Family

Definition Exponential Family

Let X be a set,
φ : X → RM a function called sufficient statistics,
h : X → R a function called scaling function, often h ≡ 1,
η : RK → RM a function called natural parameter,

then the pdf / pmf

p(x | θ) :=
1

Z (η(θ))
h(x)eη(θ)Tφ(x)

=h(x)eη(θ)Tφ(x)−A(η(θ))

with Z (θ) :=

∫
X
h(x)eη(θ)Tφ(x)dx called partition function

A(θ) := logZ (θ) called log partition function / cumulant

is called a member of the exponential family.
θ ∈ RK are called parameters.
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Machine Learning 2 1. The Exponential Family

Subfamilies

K < M: curved exponential family.

η(θ) = θ: canonical form:

p(x | θ) :=h(x)eθ
Tφ(x)−A(θ)

φ(x) = x ,X = RM : natural exponential family:

p(x | θ) :=h(x)eη(θ)T x−A(η(θ))

natural exponential family in canonical form:

p(x | θ) :=h(x)eθ
T x−A(θ)
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Machine Learning 2 1. The Exponential Family

Examples: Bernoulli

X :={0, 1}
Ber(x | µ) :=µx(1− µ)1−x

=ex log(µ)+(1−x) log(1−µ)

=eη(θ)Tφ(x),

φ(x) :=

(
x

1− x

)
, θ = µ

η(θ) :=

(
log θ

log(1− θ)

)
A(θ) :=0

A(η) :=0

Linear dependency in φ(x):

(
1
1

)T

φ(x) = 1 (over-complete)

 θ not uniquely identifiable.
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Machine Learning 2 1. The Exponential Family

Examples: Bernoulli

X :={0, 1}
Ber(x | µ) :=µx(1− µ)1−x

=ex log(µ)+(1−x) log(1−µ) = ex log µ
1−µ+log(1−µ)

=eη(θ)T x−A(η(θ)),

φ(x) :=x , θ = µ

η(θ) := log
θ

1− θ , θ = logistic(η) :=
eη

1 + eη

A(θ) :=− log(1− θ)

A(η) := log(1 + eη)

Linear dependency in φ(x):

(
1
1

)T

φ(x) = 1 (over-complete)

 θ not uniquely identifiable.
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Machine Learning 2 1. The Exponential Family

Examples: Multinoulli / Categorical

X :={1, 2, . . . , L} ≡ {x ∈ {0, 1}L |
L∑

l=1

xl = 1}, µ ∈ ∆L

Cat(x | µ) :=
L∏
`=1

µx`` = e
∑L
`=1 x` logµ`

=e
∑L−1
`=1 x` log µ`+(1−

∑L−1
`=1 x`)(1−

∑L−1
`=1 µ`)

=e

∑L−1
`=1 x` log

µ`

1−
∑L−1
`′=1

µ`′
+(1−

∑L−1
`=1 µ`)

= eη(θ)T x−A(η(θ))

φ(x) :=x1:L−1, θ = µ1:L−1

η(θ) :=

(
log

θ`

1−∑L−1
`′=1 θ`′

)
`=1,...,L−1

, θ(η) =

(
eη`

1 +
∑L−1

`′=1 e
η`′

)
`=1,...,L−1

A(η) := log(1 +
L−1∑
`=1

eη`)
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Machine Learning 2 1. The Exponential Family

Examples: Univariate Gaussian

X :=R

N (x | µ, σ2) :=
1

(2πσ2)
1
2

e−
(x−µ)2

2σ2

=
1

(2πσ2)
1
2

e−
x2

2σ2 + xµ

σ2−
µ2

2σ2 = eη(θ)Tφ(x)−A(η(θ))

φ(x) :=

(
x
x2

)
, θ =

(
µ
σ2

)
η(θ) :=

(
θ1/θ2

− 1
2θ2

)
A(η) :=− η2

1

4η2
− 1

2
log(−2η2)− 1

2
log(2π)

h(x) :=
1

(2πσ2)
1
2
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Machine Learning 2 1. The Exponential Family

Non-Examples

Uniform distribution:

Unif(x ; a, b) :=
1

b − a
δ(x ∈ [a, b])
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Machine Learning 2 1. The Exponential Family

Cumulants

∂A

∂η
= E (φ(x)),

∂2A

∂2η
= var(φ(x)), ∇2A(η) = cov(φ(x))
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Machine Learning 2 1. The Exponential Family

Likelihood and Sufficient Statistics

Data:

D := {x1, x2, . . . , xN}

Likelihood:

p(D | θ) =
N∏

n=1

h(xn)eη(θ)Tφ(xn)−A(η(θ))

=

(
N∏

n=1

h(xn)

)(
e−A(η(θ))

)N
eη(θ)T (

∑N
n=1 φ(xn))

=

(
N∏

n=1

h(xn)

)
eη(θ)Tφ(D)−NA(η(θ)), φ(D) :=

N∑
n=1

φ(xn)
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Machine Learning 2 1. The Exponential Family

Maximum Likelihood Estimator (MLE)

log p(D | θ) =

(
N∑

n=1

log h(xn)

)
+ η(θ)Tφ(D)− NA(η(θ))

for h ≡ 1, η(θ) = θ:

=N + θTφ(D)− NA(θ)

∂ log p

∂θ
=φ(D)− N

∂A(θ)

∂θ
= φ(D)− NE (φ(x))

!
= 0

 E (φ(x))
!

=
1

N

N∑
n=1

φ(xn) (moment matching)

Example: Bernoulli

θ̂ = µ :=
1

N

N∑
n=1

xn
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Machine Learning 2 2. Generalized Linear Models (GLMs)

Parametrization

p(y | θ, σ2) :=e
yθ−A(θ)

σ2 +c(y ,σ2)

where σ2 dispersion parameter,
θ natural parameter (a scalar!),
A(θ) (log) partition function,
c(y , σ2) normalization constant.
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Machine Learning 2 2. Generalized Linear Models (GLMs)

Model

xi

w

ηi µi θi

g−1

g

Ψ

Ψ−1
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Machine Learning 2 2. Generalized Linear Models (GLMs)

Model with canonical link (g = ψ)

p(y | x ;w , σ2) :=e
y wT x−A(wT x)

σ2 +c(y ,σ2)

setting

θ = wT x
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Machine Learning 2 2. Generalized Linear Models (GLMs)

Models

Distrib. mean µ = g−1(θ) link θ = g(µ)

N (y ;µ, σ2) µ = g−1(θ) = θ θ = g(µ) = µ
Bin(y ;N, µ) µ = g−1(θ) = logistic θ θ = g(µ) = logit(µ)
Poi(y ;µ) µ = g−1(θ) = eθ θ = g(µ) = logµ
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Machine Learning 2 2. Generalized Linear Models (GLMs)

Expectation and Variance

µ = E (y | x ;w , σ2) =A′(wT x)

τ2 = Var(y | x ;w , σ2) =A′′(wT x)σ2
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Machine Learning 2 2. Generalized Linear Models (GLMs)

Examples: Linear Regression

N (y ;µ, σ2) :=
1

(2πσ2)
1
2

e−
(y−µ)2

2σ2 , y ∈ R

µ(x) :=wT x

log p(y | x ,w , σ2) =− (y − µ)2

2σ2
− 1

2
log(2πσ2)

=
yµ− 1

2µ
2

σ2
− 1

2
(
y2

σ2
+ log(2πσ2))

=
y wT x − 1

2 (wT x)2

σ2
− 1

2
(
y2

σ2
+ log(2πσ2))

 A(θ) =
θ2

2

E (y) =µ = wT x

Var(y) =σ2
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Machine Learning 2 2. Generalized Linear Models (GLMs)

Examples: Binomial Regression

Bin(y ;N, π) :=

(
N
y

)
πy (1− π)N−y , y ∈ {0, 1, . . . ,N}

π(x) :=logistic(wT x)

log p(y | x ,w) =y log
π

1− π + N log(1− π) + log

(
N
y

)
 A(θ) =N log(1 + eθ)

E (y) =µ = Nπ = N logistic(wT x)

Var(y) =Nπ(1− π) = N logistic(wT x)(1− logistic(wT x))

where θ = log
π

1− π = wT x

σ2 =1
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Machine Learning 2 2. Generalized Linear Models (GLMs)

Examples: Poisson Regression

Poi(y ;µ) :=e−µ
µy

y !
, y ∈ {0, 1, 2, . . .}

µ(x) :=ew
T x

log p(y | x ,w) =y logµ− µ− log y !

 A(θ) =eθ

E (y) =µ = ew
T x

Var(y) =ew
T x

where θ = logµ = wT x

σ2 =1
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Machine Learning 2 3. Learning Algorithms
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Machine Learning 2 3. Learning Algorithms

Gradient Descent
model:

p(y | x ;w , σ2) :=e
y wT x−A(wT x)

σ2 +c(y ,σ2)

with θ =wT x

negative log likelihood:

`(w ; x , y) =−
N∑

n=1

yn w
T xn − A(wT xn)

σ2
=: − 1

σ2

N∑
n=1

`n(wT xn)

∂`n
∂wm

=
∂`n
∂θn

∂θn
∂µn

∂µn
∂ηn

∂ηn
∂wm

=(yn − µn)
∂θn
∂µn

∂µn
∂ηn

xn,m

and thus with canonical link:

∇w `(w) =− 1

σ2

N∑
n=1

(yn − µn)xn
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Machine Learning 2 3. Learning Algorithms

Newton

∇w `(w) =− 1

σ2

N∑
n=1

(yn − µn)xn

∂2`

∂2w
=

1

σ2

N∑
n=1

∂µn
∂θn

xnx
T
n =

1

σ2
XTSX

where S :=diag(
∂µ1

∂θ1
, . . . ,

∂µN
∂θN

)

Use within IRLS:

θ(t) :=Xw (t)

µ(t) :=g−1(θ(t))

z(t) :=θ(t) + (S (t))−1(y − µ(t))

w (t+1) :=(XTS (t)X )−1XTS (t)z(t)
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Machine Learning 2 3. Learning Algorithms

Stochastic Gradient Descent

∇w `(w) =− 1

σ2

N∑
n=1

(yn − µn)xn

Use a smaller subset of data to estimate the (stochastic) gradient:

∇w `(w) ≈− 1

σ2

∑
n∈S

(yn − µn)xn, S ⊆ {1, . . . ,N}

Extreme case: use only one sample at a time (online):

∇w `(w) ≈− 1

σ2
(yn − µn)xn, n ∈ {1, . . . ,N}

Beware: ∇w `(w) ≈ 0 then is not a useful stopping criterion!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 / 23



Machine Learning 2 3. Learning Algorithms

L2 Regularization

For all models, do not forget to add L2 regularization.

Straight-forward to add to all learning algorithms discussed.
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Machine Learning 2 3. Learning Algorithms

Summary

I Generalized linear models allow to model targets with
I specific domains: R, R+

0 , {0, 1}, {1, . . . ,K}, N0 etc.
I specific parametrized shapes of pdfs/pmfs.

I The model is composed of

1. a linear combination of the predictors and
2. a scalar transform to the domain of the target

(mean function, inverse link function)

I Many well-known models are special cases of GLMs:
I linear regression (= GLM with normally distributed target)
I logistic regression (= GLM with binomially distributed target)
I Poisson regression (= GLM with Poisson distributed target)

I Generic simple learning algorithms exist for GLMs independent of the
target distribution.

I GLMs have a principled probabilistic interpretation and provide
posterior distributions (uncertainty/risk).
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Machine Learning 2

Further Readings

I See also [Mur12, chapter 9].
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